Topic 3 – Acids and Bases Revision Notes

1) Acids and Bases

- The Bronsted-Lowry theory says that acids are proton donors (H⁺ donors). Bases are proton acceptors.
- Strong acids and bases are fully dissociated (or ionised)
- Weak acids and bases are partially dissociated

a) Acid-base pairs

- Conjugate acid-base pairs are two species differing by H⁺
- There is one member of the pair on each side of the equation
- For any weak acid, HA:

$HA(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + A^-(aq)$ Acid base conjugate acid conjugate base

- In this reaction, A⁻ is the conjugate base of the acid HA because it is formed by loss of H⁺ from HA
- In this example, H₃O⁺ is the conjugate acid of the base H₂O because it is formed by the gain of H⁺ by H₂O
- For a weak base, such as NH₃

```
NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)
Base acid conjugate acid conjugate base
```

2) <u>Quantifying acid and base strength</u>

- pH is a number that shows the strength of an acid or base
- $pH = -log[H^+]$ and $[H^+] = 10^{-pH}$
- pH is always given to 2 decimal places
- [H⁺] deals with negative powers over a very wide range whereas the pH scale makes the numbers more manageable

a) pH of a strong acid

Example

Calculate the pH of 0.100 mol dm⁻³ HCl

b) pH of water

Water is very slightly dissociated: H₂O(I) =

```
H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)
```

The equilibrium constant for this reaction is:

$$K = \frac{[H^{\pm}][OH^{\pm}]}{[H_2O]}$$

As [H₂O] is little changed, we define a constant $K_{\rm w},$ which is known as the ionic product of water

 $K_w = [H^+][OH^-]$

At 298K (25°C) K_w has the value of 1 x 10⁻¹⁴ mol² dm⁻⁶

For pure water, $[H^+] = [OH^-]$, so $K_w = [H^+]^2$ and $[H^+] = \sqrt{K_w}$

Example

At 318K, the value of K_w is 4.02 x 10^{-14} mol² dm⁻⁶. Calculate the pH of water at this temperature and explain why the water is still neutral.

 $\begin{array}{ll} [{\rm H}^+] &= \sqrt{K_w} \\ &= \sqrt{4.02 \ x \ 10^{-14}} \\ &= 2.01 \ x \ 10^{-7} \ {\rm mol} \ dm^{-3} \\ {\rm pH} &= -{\rm log}[{\rm H}^+] \\ &= 6.70 \\ \\ {\rm Still \ neutral \ because \ [{\rm H}^+] = \ [{\rm OH}^-] \\ \\ {\rm Source:} & {\rm AQA \ January \ 2006 \ paper } \end{array}$

c) pH of a strong base

• The K_w expression is used to calculate the pH of a strong base

```
Calculate the pH of 0.100 mol dm<sup>-3</sup> NaOH at 298K

\begin{bmatrix} OH^{-} \end{bmatrix} = 0.100 \\ \begin{bmatrix} H^{+} \end{bmatrix} = K_{w} / \begin{bmatrix} OH^{-} \end{bmatrix} \\ = 10^{-14} / 0.100 \\ = 10^{-13} \\ pH = -log[10^{-13}] \\ = 13.00 \end{bmatrix}
```

d) pH of a weak acid

The weak acid HA dissociates as follows.

$$HA \rightleftharpoons H^+ + A^-$$

The equilibrium constant for the weak acid is:

$$K_a = \frac{[H^{\pm}][A^{\pm}]}{[HA]}$$

 K_a is a measure of the extent to which a weak acid is ionised. The larger the value of K_a the more the weak acid is ionised

When one mole of HA ionises, one mole of H^+ and one mole of A^- are produced i.e. $[H^+] = [A^-]$, so we can write:

 $K_a = [H^+]^2/[HA]$

Re-arranging gives:

$$[H^+] = \sqrt{(K_a \times [HA])}$$

Calculate the pH of 0.100 mol dm⁻³ chloroethanoic acid given that $K_a = 1.38 \times 10^{-3} \text{ mol} \text{ dm}^{-3}$

 $\begin{array}{ll} [\mathsf{H}^+] &= \sqrt{(\mathsf{K}_a \; x \; [\mathsf{HA}])} \\ &= \sqrt{(1.38 \; x \; 10^{-3} \; x \; 0.100)} \\ &= \sqrt{(1.38 \; x \; 10^{-4})} \\ &= 0.0117 \\ \mathsf{pH} &= -\mathsf{log}[\mathsf{H}^+] \\ &= 1.93 \\ \end{array}$ Source $\begin{array}{ll} \mathsf{http://www.chemsheets.co.uk/} \end{array}$

e) pKa

- $pK_a = -log(K_a)$ and $K_a = 10^{-pK_a}$
- As with pH, using pK_a instead of K_a makes the numbers more manageable

Calculate the pK_a of chloroethanoic acid From the previous example, $K_a = 1.38 \text{ x}$

From the previous example, $K_a = 1.38 \times 10^{-3}$ pK_a = -log(1.38 x 10⁻³) = 2.86

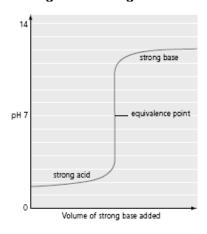
f) Diluting a strong acid or strong base

• For a diluted strong acid:

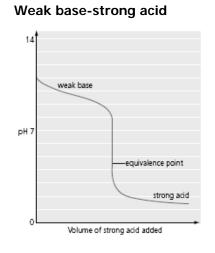
 $[H^{+}] = [H^{+}]_{old} \ x \ \underline{old \ volume}$ New volume

• For a diluted strong base:

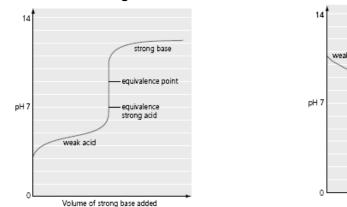
 $[OH^{-}] = [OH^{-}]_{old} \times \frac{old \ volume}{New \ volume}$

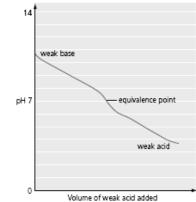

Calculate the pH of the solution formed when 100 cm^3 of water is added to 25 cm^3 of 0.50 mol dm⁻³ KOH

$$\begin{split} & [OH^{-}]_{new} &= [OH^{-}]_{old} \ x \ old \ volume/new \ volume \\ & New \ vol = 25 \ +100 \ cm^{3} \\ & [OH^{-}]_{new} &= 0.50 \ x \ 25/125 \\ &= 0.10 \ mol \ dm^{-3} \\ & [H^{+}] &= 1 \ x \ 10^{-14}/0.10 \\ &= 1 \ x \ 10^{-13} \\ & pH &= 13.00 \end{split}$$


3) Acid-base titrations

a) pH curves


- pH can be monitored during an acid-base titration and plotted against volume of reagent
- This produces a pH curve with a shape that depends on whether the acid and base are weak or strong


Strong acid-strong base

Weak acid-strong base

Weak base-weak acid

Source of these diagrams: CAMS Chemistry A2 Support Pack

- When selecting an indicator for a titration, the pH range in which the indicator changes colour must match the pH at the equivalence point of the titration
- Methyl orange red in acid, pH range 3.1-4.4, yellow in alkali. Cannot be used for weak acids (vertical part of pH curve starts about pH 7)
- Phenolphthalein colourless in acid, pH range 8.3-10.0, pink in alkali. Cannot be used for weak bases (vertical part of pH curve starts about pH 7)

b) Titration calculations

- Work out the moles of acid and base at the start
- Work out the excess moles of acid or base (the rest will be neutralised)
- For an excess of strong acid, work out the new [H⁺] and then the pH
- For an excess of strong base, work out the new [OH-] and then the pH
- With diprotic acids, like H₂SO₄, work out [H⁺] rather than [H₂SO₄]. A similar adjustment is necessary for bases like Sr(OH)₂

Example – excess of strong base

Calculate the pH of the solution formed when 20 cm³ of 0.10 mol dm⁻³ HCl is added to 30 cm⁻³ of 0.04 mol dm⁻³ NaOH

Moles HCI	= 0.10 x 20/1000
	= 0.0020 mol
Moles NaOH	= 0.04 x 30/1000
	= 0.0012 mol
Excess HCI	= 0.0020 - 0.0012
	= 0.0008 mol
Total volume	$= 50 \text{ cm}^3$
New [H ⁺]	= moles/volume
	= 0.0008/(50/1000)
	= 0.016 mol dm ⁻³
рН	= -log(0.016)
	= 1.80
Source <u>k</u>	ttp://www.chemsheets.co.uk/

4) <u>Buffer solutions</u>

- A buffer solution minimises pH changes on addition of a small amount of acid or base
- Buffer solutions are important for controlling pH in blood (so that enzymes are not denatured) and shampoos (so that eyes do not sting and skin is not damaged)

a) Acidic buffers

- An acidic buffer consists of a weak acid and the salt of a weak acid (e.g. ethanoic acid & sodium ethanoate). The salt is fully ionised giving a high concentration of ethanoate ions.
- For ethanoic acid/sodium ethanoate, the following equilibrium exists:

$CH_3COOH(aq) \rightleftharpoons CH_3COO^{-}(aq) + H^{+}(aq)$

- If a small amount of acid is added, equilibrium will shift to the left to remove the added H⁺. The following reaction occurs: CH₃COO⁻ + H⁺ → CH₃COOH
- If a small amount of base is added, the OH⁻ will react with H⁺ to form water. The equilibrium will shift to the right to replace the H⁺ that has been removed. The following reaction occurs: CH₃COOH → CH₃COO⁻ + H⁺
- In both cases the ratio [CH₃COOH]/[CH₃COO⁻] stays almost constant so the pH only changes by a small amount (see calculation below)

b) Basic buffers

- A basic buffer consists of a weak base and the salt of a weak base (e.g. ammonia solution & ammonium chloride). As before, the salt is fully ionised giving a high concentration of ammonium ions.
- For ammonia/ammonium chloride, the following equilibrium exists:

$$NH_4^+(aq) \rightleftharpoons NH_3(aq) + H^+(aq)$$

- If a small amount of acid is added, the H⁺ will react with ammonia to form ammonium ions i.e. the equilibrium will shift to the left to remove the added H⁺
- If a small amount of base is added, the OH⁺ will react with H⁺ to form water. Some ammonium ions will dissociate to replace the H⁺ that has been removed
- In both cases the ratio [NH₄⁺]/[NH₃] stays almost constant so the pH only changes by a small amount

c) Calculating the pH of a buffer solution

• The pH of an acidic buffer can be calculated using the K_a expression for the weak acid e.g. for ethanoic acid/sodium ethanoate:

$$K_a = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]}$$

Rearranging gives:

$$[H^+] = K_a x \qquad \underline{[CH_3COOH]} \\ [CH_3COO^-]$$

- The pH of a particular buffer depends on the value of K_a and the ratio of [CH₃COOH] to [CH₃COO⁻]
- This can be re-written as:

$$[H^+] = K_a x \qquad \underline{\text{moles } CH_3COOH/volume}$$

Moles CH_3COO⁻/volume

The volume cancels to leave $[H^+] = K_a \times \frac{\text{moles CH}_3\text{COOH}}{\text{Moles CH}_3\text{COO}^-}$

The mole form of the equation is often more useful than the concentration version.

Example

Source:

Ethanoic acid is a weak acid with a K_a value of 1.74 x 10⁻⁵ mol dm⁻³ at 25°C. In a buffer solution, the concentration of ethanoic acid is 0.150 mol dm⁻³ and the concentration of sodium ethanoate is 0.100 mol dm⁻³. Calculate the pH of this buffer solution

 $[H^+] = K_a x [CH_3COOH]/[CH_3COO^-]$ = 1.74 x 10⁻⁵ x 0.150/0.100 = 2.61 x 10⁻⁵ mol dm⁻³ pH = 4.58

AQA January 2005 paper

• A buffer solution can be formed by partial neutralisation of a weak acid. Some of the weak acid reacts with the added base to form a salt e.g.

```
CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O
```

• When a weak acid is half-neutralised, [Acid] = [Salt] which means that $[H^+] = K_a$ and $pH = -log[K_a]$ (i.e. $pH = pK_a$)

```
Example
A buffer solution is formed when 2.00g of sodium hydroxide are added to 1.00 dm<sup>3</sup> of a
0.220 mol dm<sup>-3</sup> solution of ethanoic acid. Calculate the pH of this buffer solution at 298K
                                       = 2.00/40.0
    Moles NaOH used
                                       = 0.050 \text{ mol}
    Moles CH<sub>3</sub>COOH at start
                                               = 0.220 mol
    Moles CH_3COONa formed = 0.050 mol
    Moles CH<sub>3</sub>COOH left
                                      = 0.220 - 0.050
                                      = 0.170 mol
In this case, converting moles to concentrations is unnecessary as the volumes cancel out
             = K_a x [CH_3COOH]/[CH_3COO^-]
    [H+]
             = 1.74 x 10<sup>-5</sup> x 0.170/0.050
             = 5.916 x 10<sup>-5</sup> mol dm<sup>-3</sup>
             = 4.23
    pН
            AQA January 2002 paper
Source:
```

Example – changes in pH of buffer solution

In a buffer solution, the concentration of ethanoic acid is 0.150 mol dm⁻³ and the concentration of sodium ethanoate is 0.100 mol dm⁻³. The acid dissociation constant for ethanoic acid, K_a , has a value of 1.74 x 10⁻⁵ mol dm⁻³ at 25 °C.

(i) Calculate the pH of this buffer solution.

$$\begin{array}{ll} [\mathsf{H}^+] & = \mathsf{K}_a \; x \; [\mathsf{CH}_3\mathsf{COOH}] / [\mathsf{CH}_3\mathsf{COO}^-] \\ & = 1.74 \; x \; 10^{-5} \; x \; 0.150 / 0.100 \\ & = 2.61 \; x \; 10^{-5} \\ \mathsf{pH} & = 4.58 \end{array}$$

(ii) A 10.0 cm³ portion of 1.00 mol dm⁻³ hydrochloric acid is added to 1000 cm³ of this buffer solution. Find the pH of this new solution.

Original moles $CH_3COOH = 0.150$ mol Original moles $CH_3COO^- = 0.100$ mol Moles H^+ added $= 1.00 \times 10.0/1000$

= 0.010 mol

On addition of H⁺: $CH_3COO^- + H^+ \rightarrow CH_3COOH$ In this case, moles CH_3COO^- decreases by 0.010 and moles CH_3COOH increases by 0.010 New moles $CH_3COOH = 0.160$ mol New moles $CH_3COO^- = 0.090$ mol

```
New [H^+] = K_a \times mol CH_3COOH/mol CH_3COO^-
= 1.74 x 10<sup>-5</sup> x 0.160/0.090
= 3.90 x 10<sup>-5</sup>
New pH = 4.51
```

(iii) A 10.0 cm³ portion of 1.00 mol dm⁻³ sodium hydroxide is added to 1000 cm³ of the original buffer solution. Find the pH of this new solution.

Moles OH ⁻ added	= 1.00 x 10.0/1000 = 0.010 mol
On addition of OH ⁻ : In this case, moles CH ₃ C increases by 0.010	CH ₃ COOH + OH ⁻ → CH ₃ COO ⁻ + H ₂ O OOH decreases by 0.010 and moles CH ₃ COO ⁻
New moles CH ₃ COOH New moles CH ₃ COO ⁻	= 0.140 mol = 0.110 mol
New $[H^+] = K_a \times \text{mol CH}_3\text{COOH/mol CH}_3\text{COO}^-$ = 1.74 x 10 ⁻⁵ x 0.140/0.110 = 2.21 x 10 ⁻⁵ New pH = 4.65	